Segmentation of MR Brain Images Using Particle Swarm Optimization (PSO) and Differential Evolution (DE)

نویسنده

  • ASSAS Ouarda
چکیده

Magnetic resonance imaging (MRI) is a powerful tool for clinical diagnosis because it allows to distinguish different tissues and allows multiple modalities (T1, T2, ...) each having particular properties. In this work, the segmentation of MR Brain images is considered as an optimization problem and solved using evolutionary algorithms: particle swarm optimization (PSO) and differential evolution (DE),. The process of segmentation is done with multilevel fuzzy thresholding. The performances of three approaches were compared using the fidelity criterion: the peak-to-signal-noise (PSNR) ratio. The methods adopted provide good results in terms of accuracy and robustness. However, the PSO is the most efficient. Keywords-component; Optimization, Segmentation, Particle swarm optimization, Differential Evolution Algorithm, MR images.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fuzzy Entropy Based MR Image Segmentation Using Particle Swarm Optimization

An image segmentation technique based on fuzzy entropy is applied for MR brain images to detect a brain tumor is presented in this paper. The proposed method performs image segmentation based on adaptive thresholding of the input MR images. The image is classified into two membership functions, whose member functions of the fuzzy region are Z-function and S-function. The optimal parameters of t...

متن کامل

Control of nonlinear systems using a hybrid APSO-BFO algorithm: An optimum design of PID controller

This paper proposes a novel hybrid algorithm namely APSO-BFO which combines merits of Bacterial Foraging Optimization (BFO) algorithm and Adaptive Particle Swarm Optimization (APSO) algorithm to determine the optimal PID parameters for control of nonlinear systems. To balance between exploration and exploitation, the proposed hybrid algorithm accomplishes global search over the whole search spa...

متن کامل

Control of nonlinear systems using a hybrid APSO-BFO algorithm: An optimum design of PID controller

This paper proposes a novel hybrid algorithm namely APSO-BFO which combines merits of Bacterial Foraging Optimization (BFO) algorithm and Adaptive Particle Swarm Optimization (APSO) algorithm to determine the optimal PID parameters for control of nonlinear systems. To balance between exploration and exploitation, the proposed hybrid algorithm accomplishes global search over the whole search spa...

متن کامل

Identifying the Defects in Glass Bottles Using Particle Swarm Optimization

This paper aims at designing and developing a suitable tool for identifying defects in glass bottles through visual inspection based on segmentation algorithm. Defects are identified in three stages namely Image acquisition, Pre-processing and filtering and Segmentation. In the Image acquisition stage, samples of real time images are taken and are converted into monochrome images. In the Pre-pr...

متن کامل

Brain tumor segmentation in MRI images using integrated modified PSO-fuzzy approach

An image segmentation technique based on maximum fuzzy entropy is applied for Magnetic Resonance (MR) brain images to detect a brain tumor is presented in this paper. The proposed method performs image segmentation based on adaptive thresholding of the input MR brain images. The MR brain image is classified into two Membership Function (MF), whose MFs of the fuzzy region are Z-function and S-fu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014